
Figure F-10: Vehicle kit interconnection diagram

Vehicle Kit Circuit Descriptions

This section provides an outline of the design and describes the modular assembly of the vehicle kit. The vehicle kit contains four PCBs:

- the accessory probe and charger probe PCBs, interfacing to the radio and battery; and
- the charger and options PCBs, containing the electronic circuitry.

A block diagram showing how the four PCBs interconnect and naming the connectors on each PCB is shown in Figure F-10.

The following subsections and their associated diagrams expand on the functionality of each vehicle kit PCB.

Vehicle Kit Accessory Probe PCB (IPN 220-01506-xx)

This PCB provides the interface to the handportable accessory connector. The audio/ control signals connect to the options PCB via a 16-way Micromatch ribbon cable. The RF signal is routed via an MCX connector and coaxial cable to a BNC connector on the rear of the vehicle kit. A block diagram of this PCB is shown in Figure F-11.

Figure F-11: Vehicle kit accessory probe PCB block diagram

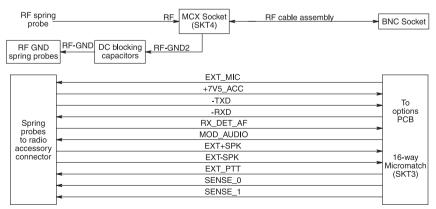


Figure F-12: Vehicle kit charger probe PCB block diagram

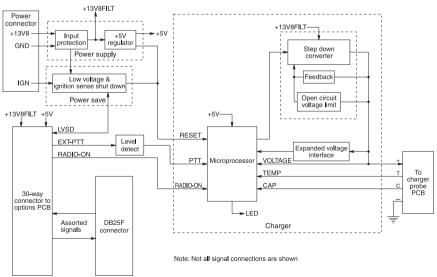
То	+BAT >	Spring Probe
charger PCB	≺ TEMP	Spring Probe
8-way Micromatch	< CAP	Spring Probe
(PL1)	GND	Spring Probe

Vehicle Kit Charger Probe PCB (IPN 220-01564-xx)

This PCB provides the interface to the radio battery for charging and is connected to the charger PCB via an 8-way Micromatch ribbon cable. A block diagram of this PCB is shown in Figure F-12.

Vehicle Kit Charger PCB (IPN 220-01504-xx)

This PCB contains the fast charger circuit module, the majority of the power supply module and about half of the power save module. A block diagram of this board is shown in Figure F-13.


Current Source

The switch mode current source is based around a Maxim MAX1627 100% duty cycle,

high efficiency, step down DC-DC controller (IC4). The core of the current source is a Buck converter consisting of Q9, L2, C46, C47 and D5. The feedback for the controller (IC4) is via current sense resistors (R58, R59) and a differential amplifier (IC5:B).

In steady state, approximately 0.8 A flows through R58 and R59, generating a voltage which is amplified by the differential amplifier, IC5:B. The output of this is fed into pin 2 of IC4 (FB). The threshold of the feedback input (IC4 pin 2) is 1.3 V, relative to VGND. When the feedback signal on pin 2 is above 1.3 V, the controller (IC4) turns off Q9. Similarly, when the feedback signal is below 1.3 V, the controller turns on Q9.

